Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38140181

RESUMO

Avian pathogenic Escherichia coli (APEC) is one of the leading pathogens that cause devastating economic losses to the poultry industry. Type I fimbriae are essential adhesion factors of APEC, which can be targeted and developed as a vaccine candidate against multiple APEC serogroups due to their excellent immunogenicity and high homology. In this study, the recombinant strain SG102 was developed by expressing the APEC type I fimbriae gene cluster (fim) on the cell surface of an avirulent Salmonella gallinarum (S. gallinarum) vector strain using a chromosome-plasmid-balanced lethal system. The expression of APEC type I fimbriae was verified by erythrocyte hemagglutination assays and antigen-antibody agglutination tests. In vitro, the level of the SG102 strain adhering to leghorn male hepatoma (LMH) cells was significantly higher than that of the empty plasmid control strain, SG101. At two weeks after oral immunization, the SG102 strain remained detectable in the livers, spleens, and ceca of SG102-immunized chickens, while the SG101 strain was eliminated in SG101-immunized chickens. At 14 days after the secondary immunization with 5 × 109 CFU of the SG102 strain orally, highly antigen-specific humoral and mucosal immune responses against APEC type I fimbriae protein were detected in SG102-immunized chickens, with IgG and secretory IgA (sIgA) concentrations of 221.50 µg/mL and 1.68 µg/mL, respectively. The survival rates of SG102-immunized chickens were 65% (13/20) and 60% (12/20) after challenge with 50 LD50 doses of APEC virulent strains O78 and O161 serogroups, respectively. By contrast, 95% (19/20) and 100% (20/20) of SG101-immunized chickens died in challenge studies involving APEC O78 and O161 infections, respectively. In addition, the SG102 strain effectively provided protection against lethal challenges from the virulent S. gallinarum strain. These results demonstrate that the SG102 strain, which expresses APEC type I fimbriae, is a promising vaccine candidate against APEC O78 and O161 serogroups as well as S. gallinarum infections.

2.
Vet Immunol Immunopathol ; 253: 110501, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36332427

RESUMO

Fowl typhoid is an important disease of chickens and turkeys, which is caused by Salmonella Gallinarum (S. Gallinarum). Vaccines with high levels of protective effects against fowl typhoid need to be developed for the poultry industry. In this study, a S. Gallinarum strain, named SG01, was isolated from a poultry farm in Mashan region of Wuxi City, China, and identified through biochemical tests and specific PCR amplifications. Then, safety evaluations of the SG01 strain were performed in young chickens. No clinical symptom including depression and diarrhea and gross lesion involved in the cardiac nodule, hepatic necrotic lesion and splenic necrotic lesion, was determined on fifteen-day-old chickens after immunization with 1 × 1010 CFU of the SG01 strain through the oral route. However, diarrhea symptoms and hepatic lesions were identified from chickens immunized with the commercial vaccine strain SG9R by the same dose and route. At 14 days post inoculation, SG01 strain was eliminated in the liver and spleen from SG01-immunized chickens, while the SG9R strain still could be identified from SG9R-immunized chickens. After challenge with the virulent S. Gallinarum strain, significant reduction of the morbidity rate was found in the SG01 immunized group (20 %) compared to the challenge group (100 %) according to signs scoring systems for clinical symptoms and gross lesions. Additionally, immunization with the SG01 strain could provide more than 8 weeks of protection periods against fowl typhoid. These results demonstrate the SG01 strain is avirulent to young chickens and might be safer compared to the SG9R strain. In addition, SG01 strain is a potential vaccine candidate against fowl typhoid in young chickens.


Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Vacinas contra Salmonella , Febre Tifoide , Animais , Galinhas , Salmonelose Animal/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Febre Tifoide/prevenção & controle , Febre Tifoide/veterinária , Salmonella , Vacinas Atenuadas , Aves Domésticas , Diarreia/veterinária
3.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613745

RESUMO

Avian meningitis Escherichia coli (E. coli) can cause acute bacterial meningitis which threatens poultry health, causes great economic losses in the poultry industry, and has recently been speculated as a potential zoonotic pathogen. Melatonin can counteract bacterial meningitis-induced disruption of the blood-brain barrier (BBB), neuroinflammation, and reduce mortality. There are increasing data showing that melatonin's beneficial effects on bacterial meningitis are associated with intestinal microbiota. In this study, our data showed that melatonin alleviated neurological symptoms, enhanced survival rate, protected the integrity of the BBB, reduced the bacterial load in various tissues and blood, and inhibited inflammation and neutrophil infiltration of brain tissue in an APEC TW-XM-meningitis mice model. The results of 16S rRNA showed that melatonin pretreatment significantly maintained the composition of intestinal microbiota in APEC-meningitis mice. The abundance and diversity of intestinal microbiota were disturbed in APEC TW-XM-meningitis mice, with a decreased ratio of Firmicutes to Bacteroides and an increased the abundance of Proteobacteria. Melatonin pretreatment could significantly improve the composition and abundance of harmful bacteria and alleviate the decreased abundance of beneficial bacteria. Importantly, melatonin failed to affect the meningitis neurologic symptoms caused by APEC TW-XM infection in antibiotic-pretreated mice. In conclusion, the results suggest that melatonin can effectively prevent meningitis induced by APEC TW-XM infection in mice, depending on the intestinal microbiota. This finding is helpful to further explore the specific target mechanism of melatonin-mediated intestinal microbiota in the prevention of and protection against Escherichia coli meningitis.


Assuntos
Infecções por Escherichia coli , Microbioma Gastrointestinal , Melatonina , Meningites Bacterianas , Meningite devida a Escherichia coli , Doenças das Aves Domésticas , Animais , Camundongos , Meningite devida a Escherichia coli/tratamento farmacológico , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Melatonina/farmacologia , Melatonina/uso terapêutico , RNA Ribossômico 16S/genética , Meningites Bacterianas/tratamento farmacológico , Doenças das Aves Domésticas/microbiologia , Galinhas/genética
4.
Biomed Res Int ; 2019: 9740568, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637261

RESUMO

Colorectal cancer (CRC) influences individual health worldwide with high morbidity and mortality. Melatonin, which shows multiple physiological functions (e.g., circadian rhythm, immune modulation, and antioncogenic action), can be present in almost all organisms and found in various tissues including gastrointestinal tract. Notably, melatonin disruption is closely associated with the elevation of CRC incidence, indicating that melatonin is effective in suppressing CRC development and progression. Mechanistically, melatonin favors in activating apoptosis and colon cancer immunity, while reducing proliferation, autophagy, metastasis, and angiogenesis, thereby exerting its anticarcinogenic effects. This review highlights that melatonin can be an adjuvant therapy and be beneficial in treating patients suffering from CRC.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Melatonina/genética , Neovascularização Patológica/tratamento farmacológico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ritmo Circadiano/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Humanos , Melatonina/uso terapêutico , Metástase Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/patologia
5.
BMC Vet Res ; 14(1): 385, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518356

RESUMO

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in humans, cows, and pigs. The gut microbiota underlies pathology of several infectious diseases yet the role of the gut microbiota in the pathogenesis of ETEC-induced diarrhea is unknown. RESULTS: By using an ETEC induced diarrheal model in piglet, we profiled the jejunal and fecal microbiota using metagenomics and 16S rRNA sequencing. A jejunal microbiota transplantation experiment was conducted to determine the role of the gut microbiota in ETEC-induced diarrhea. ETEC-induced diarrhea influenced the structure and function of gut microbiota. Diarrheal piglets had lower Bacteroidetes: Firmicutes ratio and microbiota diversity in the jejunum and feces, and lower percentage of Prevotella in the feces, but higher Lactococcus in the jejunum and higher Escherichia-Shigella in the feces. The transplantation of the jejunal microbiota from diarrheal piglets to uninfected piglets leaded to diarrhea after transplantation. Microbiota transplantation experiments also supported the notion that dysbiosis of gut microbiota is involved in the immune responses in ETEC-induced diarrhea. CONCLUSION: We conclude that ETEC infection influences the gut microbiota and the dysbiosis of gut microbiota after ETEC infection mediates the immune responses in ETEC infection.


Assuntos
Diarreia/veterinária , Disbiose/veterinária , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Enteropatias/veterinária , Doenças dos Suínos/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Diarreia/microbiologia , Disbiose/imunologia , Disbiose/microbiologia , Escherichia coli Enterotoxigênica/imunologia , Escherichia coli Enterotoxigênica/fisiologia , Infecções por Escherichia coli/veterinária , Transplante de Microbiota Fecal , Enteropatias/imunologia , Enteropatias/microbiologia , Metagenômica , RNA Ribossômico 16S/genética , Suínos , Doenças dos Suínos/imunologia
6.
Front Microbiol ; 9: 2465, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386317

RESUMO

This study aimed to investigate the jejunal metabolic variations in enterotoxigenic Escherichia coli (ETEC)-infected piglets. Piglets were infected with 1 × 1010 CFUs (colony-forming units) of ETEC W25K and assigned into diarrheal, recovered, control, and resistant groups. Jejunal samples were harvested at day 6 and metabolic profiles were analyzed via gas chromatography coupled to time-of-flight mass spectrometry (GC/TOFMS). The results showed that 33 metabolites in the jejunum were identified in ETEC-induced diarrhea, including amino acids, fatty acids, sugars, and organic acids. Compared with the control, resistant, and recovered piglets, diarrheal piglets showed higher concentrations of 4-aminobutyric acid (GABA) and glycine in the jejunum. Compared with the control and resistant piglets, six metabolites were markedly decreased in diarrheal piglets, including ornithine, asparagine, glutamine, citric acid, citrulline, and lysine. Collectively, this study provides insights into jejunal metabolic response to ETEC infection and ETEC induced diarrhea in piglets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...